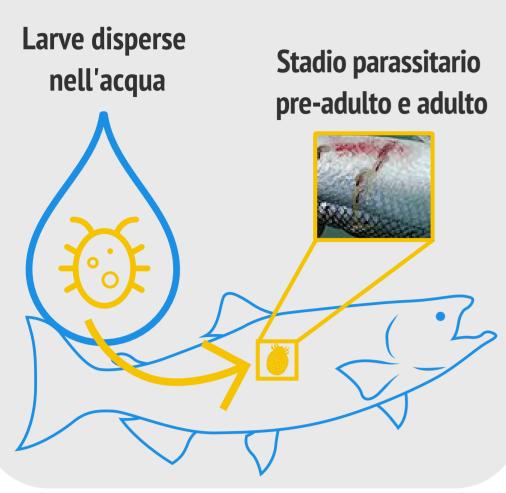
Gestione dei pidocchi di mare


Confronto dei metodi di prevenzione e trattamento contro i parassiti del salmone Lepeophtheirus salmonis e Caligus elongatus

Contesto

Pidocchi di mare

Allo stadio larvale sono dispersi nell'acqua. Allo stadio parassitario pre-adulto e adulto si attaccano al salmone e si nutrono di muco, pelle e tessuti. I pidocchi di mare causano lesioni cutanee,

riduzione delle difese immunitarie e possono portare alla morte.

Lo strato mucoso presente sulla pelle dei pesci è una naturale protezione contro i parassiti esterni, tra cui i pidocchi di mare.

Riduzione delle difese naturali

Le pratiche d'allevamento del salmone più comuni prevedono la manipolazione del pesce, cosa che tende a danneggiare la mucosa protettiva, rendendolo più vulnerabile ai pidocchi di mare.

Costi

Tra il 2012 e il 2017, in Norvegia sono stati effettuati 10.130 trattamenti di disinfestazione¹.

Dal 2013 al 2019 i pidocchi di mare sono costati all'industria dell'allevamento del salmone 4,36 miliardi di dollari².

Selezione del sito

Alcune aree hanno tassi di infezione da pidocchi di mare più elevati di altre.

Nel 2012, il tasso di infezione da pidocchi di mare nelle Shetland è stato in media superiore del 250% alla media settimanale di tre femmine adulte di pidocchi di mare per pesce, mentre le Orcadi registravano tassi molto bassi³.

Nota: dal 2019, il livello registrato rappresenta una media settimanale di 2 femmine adulte per pesce.

Un'attenta selezione delle località in cui posizionare gli allevamenti mediante analisi oceanografica è necessaria per evitare di collocarli in zone a rischio infestazione. Periodi di vuoto sanitario possono ridurre notevolmente

il rischio di infestazioni ricorrenti di pidocchi di mare, soprattutto se coordinati tra gruppi di allevamenti.

PrevenzionePrevenzione									
	Alimentazione funzionale	Trappole per pidocchi	Mangimi/luci in profondità	Reti per i pidocchi	Reti da snorkeling	Recinti elettrici			
Come funziona	Distribuzione di mangimi contenenti ingredienti che rafforzano lo strato di muco, favoriscono la guarigione o respingono i copepodi	Intorno ai recinti sono posizionate delle trappole che allontanano i pidocchi di mare dai salmoni attirandoli con luci e odori	I salmoni sono attirati in profondità dove non sono presenti pidocchi di mare tramite luci e mangimi	Un tessuto ricopre la parte superiore della gabbia di mare, impedendo alle larve di pidocchi di mare di entrare nei recinti	Delle reti costringono i salmoni a rimanere sotto la linea di profondità dei pidocchi. Possono emergere in una sola area per riempire la loro vescica natatoria.	Vengono trasmessi degli impulsi elettrici attraverso l'acqua che inibiscono i pidocchi prima che si attacchino ai salmoni			
Efficacia	Efficace al 20% ⁴	Negli studi di laboratorio: 8% di disinfestazione, 20% di efficacia nell'intrappolare adulti non attaccati e 70% di efficacia nell'intrappolare le larve ⁵	Efficacia generalmente ridotta poiché i pesci risalgono in superficie per riempire la vescica natatoria. Luci inefficaci durante il giorno ^{6,7}	Le reti per i pidocchi di mare sono risultate efficaci al 30/80%.	Dipende dal sito. Efficacia da 0 a 75% ¹¹	Nuova tecnologia, risultati promettenti, efficace al 50/80% ¹²			
Rischio di mortalità	Nessun rischio noto	Nessun rischio noto	Nessun rischio noto	Nessun rischio noto	Nessun rischio noto	Nessun rischio noto			
Rischio di lesioni	Nessun rischio noto	Nessun rischio noto	Nessun rischio noto	Nessun rischio noto	Aumento delle lesioni al muso ¹¹	Nessun rischio noto			
Ulteriori preoccupazioni di benessere	Nessuna preoccupazione nota	Nessuna preoccupazione nota	Il salmone preferisce nuotare in superficie, questo metodo altera i comportamenti gaturali	Utilizzando le reti, la quantità di ossigeno nell'acqua può esaurirsi, è quindi fondamentale il monitoraggio della qualità dell'acqua	Le reti da snorkeling possono influenzare il comportamento dei salmoni e impedire l'accesso ad acque di qualità ¹¹	Nessuna preoccupazione nota			
Impatto ambientale	Nessun impatto noto	Nessun impatto noto	Nessun impatto noto	Nessun impatto noto	Nessun impatto noto	Nessun impatto noto			

			Trattamen	ti		
	Pesci pulitori	Perossido d'idrogeno	Trattamenti chimici	Laser	Thermolicer/ Optilice	Trattamento meccanico
Come funziona	I pesci pulitori sono inseriti nei recinti marini con i salmoni e mangiano i pidocchi di mare che si trovano sui salmoni	I salmoni infetti sono trattati con perossido di idrogeno a concentrazioni che uccidono i pidocchi di mare	I salmoni infetti sono esposti a trattamenti chimici tramite dei bagni o l'alimentazione	Una telecamera subacquea rileva i pidocchi di mare e il laser li uccide	I salmoni vengono pompati attraverso acqua riscaldata e raffreddata e i pidocchi di mare si distaccano	I salmoni vengono pompati attraverso getti d'acqua che rimuovono i pidocchi di mare
Efficacia	L'efficacia è limitata e dipende dalle specie, dal periodo di permanenza, dalle densità di allevamento e dalla pulizia delle reti	Efficacia varia tra 7,5 e 99% a seconda di: durata, concentrazione e trattamenti precedenti 16	Efficacia tra il 13 e il 96% a seconda di: durata, concentrazione e trattamenti precedenti ¹⁴	Nessuna efficacia dimostrata ²³	19-100% efficace sui pidocchi non attaccati; non efficace sui pidocchi attaccati ai salmoni ^{1,19}	82-100% efficace sui pidocchi non attaccati; effetto sui pidocchi attaccati incerto 1
Rischio di mortalità	Fino al 100% per i pesci pulitori 15	La mortalità può superare il 50% ¹⁷	La mortalità può superare il 10% e in rare occasioni, il 50% ¹	Nessun rischio noto	La mortalità può essere superiore al 25% ¹	La mortalità può essere superiore al 10% ¹
Rischio di lesioni	Le aggressioni tra pesci pulitori e salmoni possono causare lesioni per entrambe le specie ¹⁴	Lesioni e necrosi branchiali. Strato mucoso danneggiato ¹⁸	Danni alle branchie ²⁰	Nessun rischio noto	Acqua fredda: lesioni alla pelle e agli occhi. Lesioni alle pinne durante i trattamenti di durata >10 min ²⁴	Perdita di squame molto comune 1
Ulteriori preoccupazioni di benessere	Il benessere del pesce pulitore è spesso scarso (mancanza di cibo, arricchimento) e può essere oggetto di aggressioni 15	Stress fisiologico e ossidativo. Capacità di resistenza alle malattie ridotta ¹⁹	Procedura stressante. Letale per gli animali circostanti ²¹	Nessun rischio noto	Acqua calda: collisione con il serbatoio, perdita di equilibrio. Acqua fredda: perdita di movimento, alimentazione alterata ²⁵	Procedura stressante ¹
Impatto ambientale	Alcuni pesci pulitori sono catturati allo stato brado, depopolando gli stock selvatici	Nessun impatto noto	Inquinamento ambientale ²²	Nessun impatto noto	Nessun impatto noto	Nessun impatto noto

Riferimenti

- 1) Overton, K., Dempster, T., Oppedal, F., Kristiansen, T.S., Gismervik, K. and Stien, L.H., 2019. Salmon lice treatments and salmon mortality in Norwegian aquaculture: a review. Reviews in Aquaculture, 11(4), pp.1398-1417.
- 2) Just Economics (2021) Dead Loss: the high cost of poor salmon farming practices. [Online] Available at:

https://www.justeconomics.co.uk/health-and-well-being/dead-loss

- 3) The Guadian (2012) Scottish fish farmers use record amounts of parasite pesticides [Online] Available at: https://amp.theguardian.com/environment/2012/sep/10/scottish-fish-farmers-parasite-pesticide
 4) Jensen, L.B., Provan, F., Larssen, E., Bron, J.E. and Obach, A., 2015. Reducing sea lice (*Lepeophtheirus salmonis*) infestation of farmed
- Atlantic salmon (*Salmo salar* L.) through functional feeds. Aquaculture Nutrition, 21(6), pp.983-993.

 5) Novales Flamarique, I., Gulbransen, C., Galbraith, M. and Stucchi, D., 2009. Monitoring and potential control of sea lice using an LED-
- based light trap. Canadian Journal of Fisheries and Aquatic Sciences, 66(8), pp.1371-1382.
- 6) Bui, S., Oppedal, F., Nilsson, J., Oldham, T.M.W. and Stien, L.H., 2019. Summary and status of deep lights and deep feed use in commercial settings: welfare, behaviour and infestation at three case study sites—End report from the FHF projects 901154 "Dypelysogfôring". Rapport fra havforskningen.
- 7) Frenzl, B., Stien, L.H., Cockerill, D., Oppedal, F., Richards, R.H., Shinn, A.P., Bron, J.E. and Migaud, H., 2014. Manipulation of farmed Atlantic salmon swimming behaviour through the adjustment of lighting and feeding regimes as a tool for salmon lice control. Aquaculture, 424, pp.183-188.
- 8) Frenzl, B., Stien, L.H., Cockerill, D., Oppedal, F., Richards, R.H., Shinn, A.P., Bron, J.E., Migaud, H., 2014. Manipulation of farmed Atlantic salmon swimming behaviour through the adjustment of lighting and feeding regimes as a tool for salmon lice control. Aquaculture 424–425, 183–188.
- 9) Grøntvedt, R.N., Kristoffersen, A.B. and Jansen, P.A., 2018. Reduced exposure of farmed salmon to salmon louse (*Lepeophtheirus salmonis* L.) infestation by use of plankton nets: Estimating the shielding effect. Aquaculture, 495, pp.865-872.
- 10) Stien, L.H., Lind, M.B., Oppedal, F., Wright, D.W. and Seternes, T., 2018. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture, 490, pp.281-287.
- 11) Oppedal, F., Bui, S., Stien, L.H., Overton, K. and Dempster, T., 2019. Snorkel technology to reduce sea lice infestations: efficacy depends on salinity at the farm site, but snorkels have minimal effects on salmon production and welfare. Aquaculture Environment Interactions, 11, pp.445-457.
- 12) European Documentation Center (EDC) of the University of Almeria, 2020. New techniques to combat parasites on EU fish farms. [Online] Available at: https://www.cde.ual.es/en/new-techniques-to-combat-parasites-on-eu-fish-farms/
- 13) Barrett, L.T., Overton, K., Stien, L.H., Oppedal, F. and Dempster, T., 2020. Effect of cleaner fish on sea lice in Norwegian salmon aquaculture: a national scale data analysis. International Journal for Parasitology.
- 14) OneKind (2018) Cleaner fish welfare on Scotland's salmon farms. [Online] Available at: https://www.onekind.scot/wpcontent/uploads/cleaner-fish-report-final-low-res.pdf
- 15) Cerbule, K. and Godfroid, J., 2020. Salmon louse (Lepeophtheirus salmonis (Krøyer)) control methods and efficacy in Atlantic salmon (Salmo salar (Linnaeus)) aquaculture: A literature review. Fishes, 5(2), p.11.
- 16) Treasurer, J. W., S. Wadsworth, and A. Grant. "Resistance of sea lice, *Lepeophtheirus salmonis* (Krøyer), to hydrogen peroxide on farmed Atlantic salmon, *Salmo salar* L." Aquaculture Research 31, no. 11 (2000): 855-860.
- 17) Overton, K., Samsing, F., Oppedal, F., Dalvin, S., Stien, L.H. and Dempster, T., 2018. The use and effects of hydrogen peroxide on salmon lice and post-smolt Atlantic salmon. Aquaculture, 486, pp.246-252.
- 18) Rantty, I, Pittman, K and Sweetman, E. (2016) Delousing with hydrogen peroxide: skin, gills and esophagus responses and repair in the first three weeks after treatment, abstract Aquaculture Europe 2016 Edinburgh, Scotland. [Online] Available at: https://www.was.org/EasOnline/AbstractDetail.aspx?i=6477
- 19) Vera, L.M. and Migaud, H., 2016. Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner. Chronobiology international, 33(5), pp.530-542.
- 20) OneKind (2018) Fish welfare on scotland's salmon farms. [Online] Available at:
- https://www.onekind.scot/wp-content/uploads/Salmon-farm-report-2018.pdf
- 21) Parsons, A.E., Escobar-Lux, R.H., Sævik, P.N., Samuelsen, O.B. and Agnalt, A.L., 2020. The impact of anti-sea lice pesticides, azamethiphos and deltamethrin, on European lobster (*Homarus gammarus*) larvae in the Norwegian marine environment. Environmental Pollution, p.114725.
- 22) Haya, K., Burridge, L.E., Davies, I.M. and Ervik, A., 2005. A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon. In Environmental effects of marine finfish aquaculture (pp. 305-340). Springer, Berlin, Heidelberg.
- 23) Bui, S., Geitung, L., Oppedal, F., Barrett, L.T., n.d. Salmon lice survive the straight shooter: a commercial scale sea cage trial of laser delousing. Prev. Vet. Med. 1–22. [Online] Available at: http://lukebarrett.org/pdfs/Bui-et-al-2020-PVM-laser.pdf
- 24) Overton, K., Oppedal, F., Stien, L.H., Moltumyr, L., Wright, D.W. and Dempster, T., 2019. Thermal delousing with cold water: Effects on salmon lice removal and salmon welfare. Aquaculture, 505, pp.41-46.
- 25) Nilsson, J., Moltumyr, L., Madaro, A., Kristiansen, T.S., Gåsnes, S.K., Mejdell, C.M., Gismervik, K. and Stien, L.H., 2019. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Veterinary and Animal Science, 8, p.100076.